Ensemble Forecast of Analyses: Coupling Data Assimilation and Sequential Aggregation

نویسنده

  • Vivien Mallet
چکیده

Sequential aggregation is an ensemble forecasting approach that weights each ensemble member based on past observations and past forecasts. This approach has several limitations: the weights are computed only at the locations and for the variables that are observed, and the observational errors are typically not accounted for. This paper introduces a way to address these limitations by coupling sequential aggregation and data assimilation. The leading idea of the proposed approach is to have the aggregation procedure forecast the forthcoming analyses, produced by a data assimilation method, instead of forecasting the observations. The approach is therefore referred to as ensemble forecasting of analyses. The analyses, which are supposed to be the best a posteriori knowledge of the model’s state, adequately take into account the observational errors and they are naturally multivariable and distributed in space. The aggregation algorithm theoretically guarantees that, in the long run and for any component of the model’s state, the ensemble forecasts approximate the analyses at least as well as the best constant (in time) linear combination of the ensemble members. In this sense, the ensemble forecasts of the analyses optimally exploit the information contained in the ensemble. The method is tested for ground-level ozone forecasting, over Europe during the full year 2001, with a twenty-member ensemble. In this application, the method proves to perform well with 28% reduction in RMSE compared to a reference simulation, to be robust in time and space, and to reproduce many spatial patterns found in the analyses only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax filtering for sequential aggregation: Application to ensemble forecast of ozone analyses

[1] This paper presents a new algorithm for sequential aggregation of an ensemble of forecasts. At any forecasting step, the aggregation consists of (1) computing new weights for the ensemble members represented by different numerical models and (2) forecasting with a weighted linear combination of the ensemble members. We assume that the time evolution of the weights is described by a linear e...

متن کامل

Ensemble member generation for sequential data assimilation

Using an ensemble of model forecasts to describe forecast error covariance extends linear sequential data assimilation schemes to nonlinear applications. This approach forms the basis of the Ensemble Kalman Filter and derivative filters such as the Ensemble Square Root Filter. While ensemble data assimilation approaches are commonly reported in the scientific literature, clear guidelines for ef...

متن کامل

The Analog Ensemble Kalman Filter and Smoother

In classical data assimilation using sequential Monte Carlo methods, a physical model is run at each time steps to simulate members corresponding to different forecast scenarios. In this paper, we propose to use statistical analogs provided by observational or model-simulated data to emulate the dynamical model and generate relevant forecast members. This new methodology is called AnEnKF/AnEnFS...

متن کامل

Merging particle filter for sequential data assimilation

A new filtering technique for sequential data assimilation, the merging particle filter (MPF), is proposed. The MPF is devised to avoid the degeneration problem, which is inevitable in the particle filter (PF), without prohibitive computational cost. In addition, it is applicable to cases in which a nonlinear relationship exists between a state and observed data where the application of the ens...

متن کامل

Assimilation of Radial Velocity and Reflectivity Data from Coastal WSR88D Radars using an Ensemble Kalman Filter for the Analysis and Forecast of Landfalling Hurricane Ike (2008)

Ensemble Kalman filter (EnKF) assimilation and forecasting experiments are performed for the case of Hurricane Ike (2008), the third most destructive hurricane hitting the USA. Data from two coastal WSR-88D radars are carefully quality controlled before assimilation. In the control assimilation experiment, reflectivity (Z) and radial velocity (Vr) data from two radars are assimilated at 10 min ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010